Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.044
Filter
1.
Vet Med Sci ; 10(3): e1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38739101

ABSTRACT

BACKGROUND AND AIM: Different Salmonella serotypes are considered one of the most important food pathogens in the world. Poultry meat and eggs are the primary carriers of Salmonella in human populations. This study aimed to estimate the Salmonella enteritidis and Salmonella typhimurium contamination rates of retail hen and quail eggs in Karaj, Iran. Moreover, the antimicrobial resistance patterns of the strains were evaluated, and the efficiency of the standard culture method and multiplex polymerase chain reaction (m-PCR) were compared. MATERIALS AND METHODS: In this descriptive cross-sectional study over 1 year (Jan-Dec 2022), 150 commercial and 150 backyard hen eggs and 300 commercial quail eggs, without cracks and fractures, were collected randomly from best selling groceries in Karaj city. All samples were examined for Salmonella contamination independently by standard culture and m-PCR approaches. A standard disc diffusion method was employed to assess the antimicrobial susceptibility of the strains against 18 antimicrobial agents. RESULTS: Out of 300 examined eggs, 2 S. enteritidis strains were isolated from the shell of backyard hen eggs. The same serotype was also detected in the contents of one of these two eggs. One S. typhimurium was isolated from the shell of a commercial hen egg. Overall, the Salmonella contamination of the shell and contents was 1% and 0.3%, respectively. Salmonella was not isolated from the eggshells or the contents of the quail eggs. There was complete agreement between the results of m-PCR and the standard culture methods. Among the 18 tested antibiotics, the highest resistance was recorded for colistin (100%), followed by nalidixic acid (75%). CONCLUSION: As most Salmonella spp. are associated with human food poisoning, continuous surveillance is required to effectively reduce the risk posed by contaminated poultry eggs. Furthermore, mandatory monitoring of antimicrobial use on Iranian poultry farms is recommended.


Subject(s)
Chickens , Eggs , Salmonella enteritidis , Salmonella typhimurium , Animals , Iran/epidemiology , Salmonella enteritidis/drug effects , Salmonella enteritidis/isolation & purification , Eggs/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Cross-Sectional Studies , Prevalence , Anti-Bacterial Agents/pharmacology , Quail/microbiology , Drug Resistance, Bacterial , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology
2.
Food Chem ; 449: 139220, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579657

ABSTRACT

A colorimetry/fluorescence dual-mode assay based on the aptamer-functionalized magnetic covalent organic framework-supported CuO and Au NPs (MCOF-CuO/Au@apt) was developed for Salmonella typhimurium (S. typhimurium) biosensing. The nanohybrid combined three functions in one: good magnetic separation characteristic, excellent oxidase-mimic activity for tetrap-aminophenylethylene (TPE-4A), and target recognition capability. The attachment of MCOF-CuO/Au@apt onto the surface of S. typhimurium resulted in a significant reduction in the oxidase-mimicking activity of the nanohybrid, which could generate dual-signal of colorimetry and fluorescence through the catalytic oxidation of TPE-4A. Based on this, S. typhimurium could be specifically detected in the linear ranges of 102- 106 CFU·mL-1 and 101- 106 CFU·mL-1, with LODs of 7.6 and 2.1 CFU·mL-1, respectively in colorimetry/fluorescence modes. Moreover, the smartphone and linear discrimination analysis-based system could be used for on-site and portable testing. In addition, this platform showed applicability in detecting S. typhimurium in milk, egg liquid and chicken samples.


Subject(s)
Biosensing Techniques , Colorimetry , Salmonella typhimurium , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/enzymology , Animals , Biosensing Techniques/instrumentation , Milk/microbiology , Milk/chemistry , Fluorescence , Chickens , Gold/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Food Contamination/analysis , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence , Eggs/analysis , Eggs/microbiology
3.
Int J Food Microbiol ; 398: 110213, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37120942

ABSTRACT

The major pathogen associated with eggs is Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) and chlorine washing is the most widely used for sanitization. Microbubble, a novel technique and able to operate in large quantity, has been presented to be an alternative method. Thus, microbubble water combining with ozone (OMB) was applied to disinfect S. Enteritidis spiked on shells at 107 cells per egg. OMB was generated by injecting ozone into a Nikuni microbubble system, then delivered into 10 L of water. After 5, 10, or 20 min of activation time, the eggs were placed into OMB and washed for 30 or 60 s. The controls involved unwashed, water washing, ozone only, and microbubble only (MB). The highest reduction, 5.19 log CFU/egg, was achieved by the combination of 20-min activation and 60-s washing, which was used for following tests of large water quantities. Comparing with the unwashed control, 4.32, 3.73 and 3.07 log CFU/egg reductions were achieved in 25, 80, and 100 L of water, respectively. The other system, Calpeda, with higher motor power was tested in 100 L and obtained a reduction of 4.15 log CFU/egg. The average diameter of bubbles generated by Nikuni and Calpeda pump systems were 29.05 and 36.50 µm, respectively, which both were within the microbubble definition of ISO. Much lower reductions, around 1-2 log10 CFU/egg, were shown with the treatments of ozone only and MB by the same operative parameters. After 15-day storage at ambient temperature, the OMB-treated eggs showed similar sensory quality with the unwashed ones. This is the first study demonstrating that OMB effectively inactivates S. Enteritidis on shell eggs in large quantity of water and does not diminished the sensory characteristics of eggs. Furthermore, bacterial population was under the detection limit in the OMB-treated water.


Subject(s)
Ozone , Animals , Ozone/pharmacology , Salmonella enteritidis , Water , Microbubbles , Eggs/microbiology , Egg Shell/microbiology , Chickens , Food Microbiology
4.
BMC Microbiol ; 22(1): 279, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418940

ABSTRACT

BACKGROUND: Food-borne infections mainly due to Salmonella enterica serovar Enteritidis (S. Enteritidis) are major concerns worldwide. S. Enteritidis isolates may serve as reservoirs for spreading antimicrobial drug resistance genes including carbapenemases. This study aimed to screen the occurrence of virulence factors, carbapenemases, and antibiotic resistance genes in S. Enteritidis isolated from chicken meat and eggs in Iraq. RESULTS: In total, 1000 non-duplicated chicken meat and 1000 egg samples were collected during 2019-2020. Presumptive S. Enteritidis isolates were initially identified by standard bacteriology tests and then were confirmed using polymerase chain reaction (PCR). Carbapenem resistance was detected using the disk diffusion method. Virulence and carbapenemase genes were screened using the PCR method. In total, 100 (5.0%) S. Enteritidis isolates were identified from 2000 samples collected using phenotypic and molecular methods. These isolates were identified from 4.9% chicken meat (n = 49/1000) and 5.1% egg (n = 51/1000) samples, respectively. The most and the least susceptibility was found to gentamicin and ceftazidime antibiotics, respectively. The prevalence of different virulence factors were as follows: phoP/Q (40.0%), traT (30.0%), stn (22.0%), slyA (11.0%), and sopB (9.0%). Among 20 carbapenem-resistant S. Enteritidis isolates, the most predominant carbapenemase gene was blaIMP (35.0%, n = 7), followed by blaOXA-48-like (25.0%, n = 5), and blaNDM (10.0%, n = 2), while the blaKPC and blaVIM genes were not detected. The coexistence of blaIMP, blaOXA-48-like, and blaNDM genes was determined in two isolates. The prevalence of different antibiotic resistance genes were as follows: tetA (87.1%), tetB (87.1%), dfrA1 (77.6%), and sul1 (83.6%). CONCLUSION: Considering the existence of carbapenem-resistant S. Enteritidis harboring different virulence and antibiotic resistance genes in chicken meat and egg samples, adherence to proper hygienic conditions should be considered.


Subject(s)
Chickens , Salmonella enteritidis , Animals , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Eggs/microbiology , Iraq , Meat/microbiology , Microbial Sensitivity Tests , Salmonella enteritidis/genetics , Virulence Factors/genetics
5.
Curr Opin Infect Dis ; 35(5): 431-435, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36098261

ABSTRACT

PURPOSE OF REVIEW: Nontyphoidal Salmonella is a major food safety concern in developed and developing countries. Table eggs are often linked to cases of foodborne gastrointestinal disease. This review is focused on the latest findings on foodborne Salmonella infections acquired from poultry products and their implications on food safety. RECENT FINDINGS: Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) are the predominant Salmonella serovars associated with human Salmonellosis. In Australia, ST is the predominant serovar but SE has been recently detected in some commercial free-range egg flocks. The Salmonella shedding in poultry flocks can be highly variable across different flocks and farms; as a result, the level of product contamination is largely attributed to the flock management. The microevolution in the ST genome after in-vivo passaging may have clinical significance. On farm use of Salmonella vaccines and/or interventions during the processing of the product can influence the bacterial load. The refrigeration of the product also influences the safety of the poultry product. SUMMARY: Many interventions are in place for the control of Salmonella from farm to fork. However, given the biosecurity challenges because of the increase in public demand for free-range products, the emergence of Salmonella virulent types and expensive diagnostics, ongoing collaborative efforts from farmers, regulators and public health officials are required.


Subject(s)
Foodborne Diseases , Salmonella Infections , Animals , Eggs/microbiology , Humans , Poultry/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella Infections/prevention & control , Salmonella enteritidis , Salmonella typhimurium
6.
Food Microbiol ; 107: 104068, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953175

ABSTRACT

The importance of egg natural defences to prevent bacterial contamination and their relation with hen age in extended production cycles were evaluated. Egg-white from eggs of different hen age groups (up 100-weeks-old) and lines (Hy-Line white and brown) were inoculated with Gram-positive Staphylococcus aureus or Gram-negative Salmonella Typhimurium, ranging from 103-106 CFU/mL. Our results show that concentrations of egg-white lysozyme and, particularly, ovotransferrin are important to modulate bacterial survival in a dose-dependent matter. Depending on protein concentration, their effect ranges from bactericidal to bacteriostatic, with a threshold for bacterial contamination that depends also on hen age and line. The concentrations of lysozyme and ovotransferrin increased with hen age (up to 2 and 22 w/w% of total protein, respectively), and eggs laid by older hens exhibited the greatest potential to prevent the growth of the highest Salmonella inoculum (106 CFU/mL). Salmonella-penetration experiments demonstrated that non-contaminated eggs display significantly higher concentrations of antimicrobial proteins. However, eggs from older hens needed a higher concentration of these proteins (>20% ovotransferrin) to prevent bacterial contamination, showing that antimicrobial protein concentrations in egg-whites was not the only factor influencing bacterial contamination. Finally, this study demonstrated that egg-white of eggs produced by old hens are less prone to contamination by Salmonella.


Subject(s)
Chickens , Egg White , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Chickens/microbiology , Conalbumin/pharmacology , Eggs/microbiology , Female , Muramidase/pharmacology
7.
Food Chem ; 377: 131969, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35026473

ABSTRACT

Thirty-seven volatiles were identified by gas chromatography-ion mobility spectrometry in sturgeon caviar. Alkenes (37, 43), alcohols (30, 36), aldehydes (9, 10), and esters (11, 13) were detected by two-dimensional gas chromatography-time-off-flight mass spectrometry in fresh and stored caviar, respectively. Alkenes (humulene, caryophyllene, longifolene, and d-limonene), aldehydes (heptanal, hexanal, pentanal, and 3-methyl butanal), and 2-ethyl-1-hexanol were sniffed and described as providing fresh, fatty, and fishy attributes by gas chromatography-olfactometry. The fungal genera of Apiotrichum, Penicillium, Filobasidium, Gibberella, and Cladosporium and 16 bacterial genera were significantly correlated with variations in the contents of 25 aldehydes and 11 ketones. Nine strains, 20 fatty acids, and 69 differential phospholipids were isolated and profiled. Glycerophosphoethanolamine (20:2/20:4), glycerophosphoethanolamine (22:6/22:5), and glycerophosphocholine (16:0/13:0) were significantly associated with the formation of odorants and the proposed mechanism of flavor formation from phospholipids is summarized. This study represents a foundation for achieving targeted preservation and flavor control of caviar.


Subject(s)
Eggs , Phospholipids , Taste , Volatile Organic Compounds , Animals , Eggs/microbiology , Fishes , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olfactometry , Phospholipids/chemistry , Volatile Organic Compounds/analysis
8.
J Food Prot ; 85(4): 647-652, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34935932

ABSTRACT

ABSTRACT: Bacillus weihenstephanensis can grow at refrigeration temperature and cause food poisoning. It has been isolated from liquid whole egg products. The moderate heat used for pasteurization of liquid egg products is ineffective for killing spore-forming bacteria, including Bacillus. Available predictive models and a pretrial study in broth suggested the potential for growth of Bacillus spp. under the tested conditions. Hence, hurdles such as storage of product below 4°C or use of preservatives would be needed to ensure the food safety of pasteurized egg products. This study evaluated the growth inhibition of B. weihenstephanensis in pasteurized liquid whole egg product formulated with 6.25 ppm of nisin during storage at refrigerated and refrigerated temperatures at abuse levels for a total 13 weeks in three replicate trials. At day 0, the product had a pH of 7.52 ± 0.29, while background microflora, such as aerobic plate counts (APC), presumptive Bacillus cereus and yeast and molds were <10 CFU/g. Product inoculated with target 2.5 log CFU/g of B. weihenstephanensis, stored at 4°C for 4 weeks and subsequently at 7 or 10°C for 9 weeks, exhibited no growth in all three replicate trials. Average counts reduced (P < 0.05) by at least 1 log in 6 weeks in all samples stored at either 7 or 10°C. Similarly, growth of total plate counts, presumptive Bacillus spp., and yeast and mold counts was not observed in uninoculated controls stored at 4°C for 4 weeks and subsequently at 7 or 10°C for 9 weeks. Visual and odor evaluation performed at each sampling time point showed no abnormalities. This study assessed the efficacy of the maximum level of nisin allowed for use in pasteurized liquid whole eggs and validated the inhibition of B. weihenstephanensis in the product for an extended shelf life of up to 13 weeks.


Subject(s)
Bacillus , Eggs/microbiology , Food Contamination , Nisin , Pasteurization , Bacillus cereus , Food Contamination/prevention & control , Food Microbiology , Nisin/pharmacology , Spores, Bacterial
9.
Arq. bras. med. vet. zootec. (Online) ; 73(5): 1137-1146, Sept.-Oct. 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1345273

ABSTRACT

This study aimed to evaluate the effectiveness of ultraviolet light in reducing bacterial load of eggshells and the impact of experimental disinfection on hatching, embryo mortality, and time-borne distribution using broiler breeder hens of different ages (38, 42, and 48 weeks old). Fertile eggs were subjected to different exposure periods (5, 7, and 9 minutes) of UV light (UV-C) with a 254 nm wavelength. For controls, eggs disinfected with paraformaldehyde (5.3 g/m3) and eggs not disinfected (NC). After subjection to disinfection protocols, the eggs were placed into sterile plastic bags containing 20 mL of peptone saline solution (0.1% m:v) and massaged for 1 minute to release the bacterial load. Aliquots of this solution were incubated in specific medium for bacterial growth for 48 hours at 37ºC for subsequent CFU counts. To evaluate the effects of disinfection on production, eggs previously disinfected by UV-C (9 min) and paraformaldehyde and NC eggs were candled between incubation days 10 and 13 and at the end of the incubation period to assess embryonic mortality. Hatchability distribution was performed every 8 hours. The 9 minutes 254nm UV-C light exposure was able to disinfect viable eggs and matched the effectiveness of the paraformaldehyde technique.(AU)


Objetivou-se avaliar a eficácia da luz ultravioleta na redução da carga bacteriana de cascas de ovos e o impacto na eclosão e na mortalidade embrionária observando-se a idade das matrizes (38, 42 e 48 semanas). Os ovos foram submetidos a diferentes períodos de exposição (cinco, sete e nove minutos) à luz UV (UV-C) com comprimento de onda de 254nm. Os controles foram ovos desinfetados com paraformaldeído (5,3g/m³) e ovos não desinfetados (NC). Após a desinfecção, os ovos foram colocados em sacos plásticos estéreis contendo 20mL de solução salina peptonada (0,1% m:v) e massageados por um (1) minuto para descolamento das bactérias. Alíquotas dessa solução foram incubadas em meio para crescimento bacteriano por 48 horas a 37ºC e contagem de UFC. Para avaliar os efeitos da desinfecção, ovos previamente desinfetados por UV-C (nove minutos) e ovos com paraformaldeído e NC foram submetidos à ovoscopia entre os dias 10 e 13 de incubação e ao final do período de incubação, para avaliação da mortalidade embrionária. A distribuição da eclodibilidade foi realizada a cada oito horas. A exposição à luz UV-C de 25nm de nove minutos desinfetou os ovos férteis e coincidiu com a eficácia do paraformaldeído.(AU)


Subject(s)
Animals , Chickens , Disinfection/methods , Eggs/radiation effects , Eggs/microbiology , Ultraviolet Rays
10.
Molecules ; 26(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34500692

ABSTRACT

Table eggs are an affordable yet nutritious protein source for humans. Unfortunately, eggs are a vector for bacteria that could cause foodborne illness. This study aimed to investigate the effectiveness of a quaternary ammonium compound (quat) sanitizer against aerobic mesophilic bacteria, yeast, and mold load on the eggshell surface of free-range and commercial farms and the post-treatment effect on microbial load during storage. Total aerobic mesophilic bacteria, yeast, and molds were enumerated using plate count techniques. The efficacy of the quaternary ammonium sanitizer (quat) was tested using two levels: full factorial with two replicates for corner points, factor A (maximum: 200 ppm, minimum: 100 ppm) and factor B (maximum: 15 min, minimum: 5 min). Quat sanitizer significantly (p < 0.05) reduced approximately 4 log10 CFU/cm2 of the aerobic mesophilic bacteria, 1.5 to 2.5 log10 CFU/cm2 of the mold population, and 1.5 to 2 log10 CFU/cm2 of the yeast population. However, there was no significant (p ≥ 0.05) response observed between individual factor levels (maximum and minimum), and two-way interaction terms were also not statistically significant (p ≥ 0.05). A low (<1 log10 CFU/cm2) aerobic mesophilic bacteria trend was observed when shell eggs were stored in a cold environment up to the production expiry date. No internal microbial load was observed; thus, it was postulated that washing with quat sanitizer discreetly (without physically damaging the eggshell) does not facilitate microbial penetration during storage at either room temperature or cold storage. Current study findings demonstrated that the quat sanitizer effectively reduced the microbial population on eggshells without promoting internal microbial growth.


Subject(s)
Egg Shell/microbiology , Eggs/microbiology , Quaternary Ammonium Compounds/pharmacology , Animals , Bacteria, Aerobic/drug effects , Disinfection , Food Microbiology , Humans
11.
Sci Rep ; 11(1): 18026, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504138

ABSTRACT

Salmonella Typhimurium is a human pathogen associated with eggs and egg-derived products. In Australia, it is recommended that eggs should be refrigerated to prevent condensation that can enhance bacterial penetration across the eggshell. Except for the United States, the guidelines on egg refrigeration are not prescriptive. In the current study, in-vitro and in-vivo experiments were conducted to understand the role of egg storage temperatures (refrigerated vs ambient) on bacterial load and the virulence genes expression of Salmonella Typhimurium. The in-vitro egg study showed that the load of Salmonella Typhimurium significantly increased in yolk and albumen stored at 25 °C. The gene expression study showed that ompR, misL, pefA, spvA, shdA, bapA, and csgB were significantly up-regulated in the egg yolk stored at 5 °C and 25 °C for 96 h; however, an in-vivo study revealed that mice infected with egg yolk stored at 25 °C, developed salmonellosis from day 3 post-infection (p.i.). Mice fed with inoculated egg yolk, albumen, or eggshell wash stored at refrigerated temperature did not show signs of salmonellosis during the period of the experiment. Data obtained in this study highlighted the importance of egg refrigeration in terms of improving product safety.


Subject(s)
Eggs/microbiology , Food Safety/methods , Refrigeration/methods , Salmonella Food Poisoning/prevention & control , Salmonella Infections/prevention & control , Salmonella typhimurium/pathogenicity , Animals , Australia , Chickens , Colony Count, Microbial , Female , Food Microbiology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Humans , Mice , Mice, Inbred BALB C , Salmonella Food Poisoning/microbiology , Salmonella Food Poisoning/pathology , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Temperature , Virulence
12.
Int J Food Microbiol ; 355: 109332, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34358812

ABSTRACT

Consumer awareness and distaste towards both bacterial and chemical contaminations on food items have been increasing in recent years. Non-thermal plasma (NTP) is a cutting-edge technology which has been shown to effectively inactivate bacteria on the treated foods. Although the general NTP with a single plasma jet is appropriate for the continuous operation process, it suffers limitations due to its smaller scanning area. Here, a novel NTP device with a double rotary nozzle jet system was utilized, which could treat an area instead of a point. The shell eggs inoculated with Salmonella enterica serotype Enteritidis (SE) were placed on a moving platform under the double rotary nozzle jet system. The efficacy of the NTP treatment on microbial decontamination was evaluated by testing a total of 26 combinations of operating parameters consisting of various plasma power (150, 180, 210 W), argon flow rate (10, 15, 20 slm), repetition of the moving platform (4, 6, 8 times), and speed of the moving platform (5, 10 mm/s). Although significantly higher SE reduction (p < 0.05) was achieved with higher power, more repetitions, larger argon flow rates, and lower speed of the platform, these parameters induced significant alterations in the sensory properties of the treated eggs. By comprehensively considering the bacterial reductions, egg quality, and sensory properties, NTP treatment with combination T (180 W-15 slm-6 times-10 mm/s) was determined to be the optimal parameter, which achieved >4 log CFU/egg of SE reduction and significantly better sensory properties than commercially washed eggs (p < 0.05). Additionally, SEM analysis revealed that NTP treatment with combination T resulted in less damage to egg cuticles compared to commercially washed eggs. This novel NTP device offers an efficient antibacterial activity under shorter exposure time (30 s), smaller argon flow rate (15 slm), and lower power (180 W) without adversely affecting the overall quality of the treated eggs. Therefore, this NTP device equipped with the double rotary jet system possesses a potential solution for future industrial applications.


Subject(s)
Disinfection , Egg Shell , Food Microbiology , Plasma Gases , Salmonella enteritidis , Animals , Chickens , Colony Count, Microbial , Disinfection/instrumentation , Disinfection/methods , Egg Shell/microbiology , Eggs/microbiology , Food Microbiology/instrumentation , Food Microbiology/methods , Plasma Gases/pharmacology , Salmonella enteritidis/drug effects
13.
PLoS One ; 16(7): e0254301, 2021.
Article in English | MEDLINE | ID: mdl-34314433

ABSTRACT

BACKGROUND: During food or feed contamination events, it is of utmost importance to ensure their rapid resolution to minimize impact on human health, animal health and finances. The existing Rapid Alert System for Food and Feed (RASFF) is used by the European Commission, national competent authorities of member countries and the European Food Safety Authority to report information on any direct or indirect human health risk arising from food or feed, or serious risks to animal health or the environment in relation to feed. Nevertheless, no methods exist to to collectively evaluate this vast source of supply chain information. METHODS: To aid in the extraction, evaluation and visualization of the data in RASFF notifications, we present the Rapid Alert Supply Network Extractor (RASNEX) open-source tool available from https://doi.org/10.5281/zenodo.4322555 freely. Among RASNEX's functions is the graphical mapping of food and feed supply chain operators implicated in contamination events. RASNEX can be used during ongoing events as a support tool for risk analysis using RASFF notifications as input. RESULTS: In a first use case, we showcase the functionality of RASNEX with the RASFF notification on a 2017/2018 contamination event in eggs caused by the illegal use of fipronil. The information in this RASFF notification is used to visualize nine different flows of main and related food products. In a second use case, we combine RASFF notifications from different types of food safety hazards (Salmonella spp., fipronil and others) to obtain wider coverage of the visualized egg supply network compared to the first use case. Actors in the egg supply chain were identified mainly for Italy, Poland and Benelux. Other countries (although involved in the egg supply chain) were underrepresented. CONCLUSIONS: We hypothesize that biases may be caused by inconsistent RASFF reporting behaviors by its members. These inconsistencies may be counteracted by implementing standardized decision-making tools to harmonize decisions whether to launch a RASFF notification, in turn resulting in a more uniform future coverage across European food and feed supply chains with RASNEX.


Subject(s)
Consumer Product Safety/legislation & jurisprudence , Food Contamination/prevention & control , User-Computer Interface , Animals , Chickens , Eggs/analysis , Eggs/microbiology , European Union , Food Chain , Food Contamination/analysis , Humans , Insecticides/analysis , Pyrazoles/analysis , Salmonella/pathogenicity
14.
Sci Rep ; 11(1): 9499, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947948

ABSTRACT

Holotrichia oblita (Coleoptera: Scarabaeidae) and some other scarab beetles are the main soil-dwelling pests in China. Bacillus thuringiensis (Bt) and Beauveria bassiana (Bb) are entomopathogens that have been used as biocontrol agents of various pests. However, scarab larvae especially H. oblita exhibited strong adaptability to these pathogens. Compared to other scarabs, H. oblita could form a specific soil egg case (SEC) structure surrounding its eggs, and young larvae complete the initial development process inside this structure. In this study, we investigated the role of SEC structure and microorganisms from SEC and egg surface in pathogen adaptability. 16S rRNA gene analysis revealed low bacterial richness and high community unevenness in egg surface, with Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria dominating. In terms of OTUs composition analysis, the data show that the egg surface contains a large number of unique bacteria, indicating that the egg bacterial community may be derived from maternal transmission. Furthermore, we found that all culturable bacteria isolated from egg surface possessed antimicrobial activity against both Bt and Bb. The Pseudomonas bacteria with a significantly higher abundance in egg surface showed strong Bt- and Bb antagonistic ability. In conclusion, this study demonstrated a unique and antimicrobial bacterial community of H. oblita egg surface, which may contribute to its adaptability. Furthermore, the specific SEC structure surrounding the H. oblita eggs will provide a stable microenvironment for the eggs and egg surface bacteria, which probably provides more advantages for H. oblita adaptation ability.


Subject(s)
Bacillus thuringiensis/growth & development , Beauveria/growth & development , Coleoptera/microbiology , Eggs/microbiology , Animals , Bacillus thuringiensis/genetics , Beauveria/genetics , Larva/genetics , Larva/microbiology , RNA, Ribosomal, 16S/genetics
15.
BMC Vet Res ; 17(1): 196, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34030671

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most common serovars, associated with human salmonellosis. The food-borne outbreak of this bacterium is mainly related to the consumption of contaminated poultry meat and poultry products, including eggs. Therefore, rapid and accurate detection, besides investigation of virulence characteristics and antimicrobial resistance profiles of S. Enteritidis in poultry and poultry egg samples is essential. A total of 3125 samples (2250 poultry and 875 poultry egg samples), sent to the administrative centers of veterinary microbiology laboratories in six provinces of Iran, were examined for Salmonella contamination, according to the ISO 6579 guideline. Next, duplex PCR was conducted on 250 presumptive Salmonella isolates to detect invA gene for identification of the genus Salmonella and sdf gene for identification of S. Enteritidis. Subsequently, the S. Enteritidis isolates were examined for detection of important virulence genes (pagC, cdtB, msgA, spaN, tolC, lpfC, and spvC) and determination of antibiotic resistance patterns against nalidixic acid, trimethoprim-sulfamethoxazole, cephalothin, ceftazidime, colistin sulfate, and kanamycin by the disk diffusion method. RESULTS: Overall, 8.7 and 2.3% of poultry samples and 6.3 and 1.3% of eggs were contaminated with Salmonella species and S. Enteritidis, respectively. The invA and msgA genes (100%) and cdtB gene (6.3%) had the highest and the lowest prevalence rates in S. Enteritidis isolates. The spvC gene, which is mainly located on the Salmonella virulence plasmid, was detected in 50.8% of S. Enteritidis isolates. The S. Enteritidis isolates showed the highest and the lowest resistance to nalidixic acid (87.3%) and ceftazidime (11.1%), respectively. Unfortunately, 27.0% of S. Enteritidis isolates were multidrug-resistant (MDR). CONCLUSION: The rate of contamination with Salmonella in the poultry and egg samples, besides the presence of antimicrobial resistant and MDR Salmonella isolates harboring the virulence genes in these samples, could significantly affect food safety and subsequently, human health. Therefore, continuous monitoring of animal-source foods, enhancement of poultry farm control measures, and limiting the use of antibiotics for prophylactic purposes in food producing animals, are essential for reducing the zoonotic risk of this foodborne pathogen for consumers and also choosing effective antibiotics for the treatment of salmonellosis.


Subject(s)
Eggs/microbiology , Poultry/microbiology , Salmonella enteritidis/drug effects , Salmonella enteritidis/isolation & purification , Salmonella enteritidis/pathogenicity , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Genotype , Iran , Microbial Sensitivity Tests/veterinary , Phenotype , Poultry Products/microbiology , Prevalence , Salmonella enteritidis/genetics , Virulence/genetics
16.
ScientificWorldJournal ; 2021: 6631860, 2021.
Article in English | MEDLINE | ID: mdl-33854412

ABSTRACT

Escherichia coli O157 : H7 (E. coli O157 : H7) has been found to be the major cause of food-borne diseases and a serious public health problem in the world, with an increasing concern for the emergence and spread of antimicrobial-resistant strains. Hitherto, little is known about the carriage of E. coli O157 : H7 and its antimicrobial susceptibility profile in the food of animal origin in Ethiopia. This study aimed to determine the occurrence and multidrug resistance profile of E. coli O157 : H7 from food of animal origin at different catering establishments in the selected study settings of Arsi Zone. One hundred ninety-two animal origin food items, namely, raw/minced meat (locally known as "Kitfo," "Kurt," and "Dulet"), raw milk, egg sandwich, and cream cake samples were collected and processed for microbiological detection of E. coli O157 : H7. Out of 192 samples, 2.1% (4/192) were positive for E. coli O157 : H7. Two E. coli O157 : H7 isolates were obtained from "Dulet" (6.3%) followed by "Kurt" (3.1%, 1/32) and raw milk (3.1%, 1/32), whereas no isolate was obtained from "Kitfo," egg sandwich, and cream cake samples. Of the 4 E. coli O157 : H7 isolates subjected to 10 panels of antimicrobial discs, 3 (75%) were highly resistant to kanamycin, streptomycin, and nitrofurantoin. Besides, all the isolates displayed multidrug resistance phenotypes, 3 to 5 antimicrobial resistance, amid kanamycin, streptomycin, nitrofurantoin, tetracycline, and chloramphenicol. The occurrence of multidrug-resistant E. coli O157 : H7 isolates from foods of animal origin sampled from different catering establishments reveals that the general sanitary condition of the catering establishments, utensils used, and personnel hygienic practices did not comply with the recommended standards. Thus, this finding calls for urgent attention toward appropriate controls and good hygienic practices in different catering establishments dealing with consuming raw/undercooked foods of animal origin.


Subject(s)
Eggs/microbiology , Escherichia coli O157/isolation & purification , Food Microbiology , Meat/microbiology , Milk/microbiology , Restaurants , Animals , Anti-Bacterial Agents/pharmacology , Catchment Area, Health , Drug Resistance, Multiple, Bacterial , Escherichia coli O157/drug effects , Ethiopia , Food Handling/instrumentation , Food Handling/methods , Latex Fixation Tests , Logistic Models , Meat Products/microbiology , Raw Foods/microbiology , Risk Factors , Sampling Studies
17.
Lett Appl Microbiol ; 73(1): 54-63, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33765334

ABSTRACT

Lactic Acid Bacteria (LAB) regulate and maintain the stability of healthy microbial flora, inhibit the adhesion of pathogenic bacteria and promote the colonization of beneficial micro-organisms. The drug resistance and pathogenicity of Salmonella enteritis SE47 isolated from retail eggs were investigated. Meanwhile, Enterococcus faecalis L76 and Lactobacillus salivarius LAB35 were isolated from intestine of chicken. With SE47 as indicator bacteria, the diameters of L76 and LAB35 inhibition zones were 12 mm and 8·5 mm, respectively, by agar inhibition circle method, which indicated that both of them had inhibitory effect on Salmonella, and L76 had better antibacterial effect; two chicken-derived lactic acid bacteria isolates and Salmonella SE47 were incubated with Caco-2. The adhesion index of L76 was 17·5%, which was much higher than that of LAB35 (10·21%) and SE47 (4·89%), this experiment shows that the higher the bacteriostatic effect of potential probiotics, the stronger the adhesion ability; then Caco-2 cells were incubated with different bacteria, and the survival of Caco-2 cells was observed by flow cytometry. Compared with Salmonella SE47, the results showed that lactic acid bacteria isolates could effectively protect Caco-2 cells; finally, after different bacteria incubated Caco-2 cells, according to the cytokine detection kit, the RNA of Caco-2 cells was extracted and transcribed into cDNA, then detected by fluorescence quantitative PCR, the results showed that L76 could protect Caco-2 cells from the invasion of Salmonella SE47, with less cell membrane rupture and lower expression of MIF and TNF genes. Therefore, the lactic acid bacteria isolates can effectively inhibit the adhesion of Salmonella and protect the integrity of intestinal barrier.


Subject(s)
Antibiosis/physiology , Eggs/microbiology , Lactobacillales/physiology , Salmonella Infections/microbiology , Salmonella enterica/physiology , Animals , Caco-2 Cells , Chickens/microbiology , Drug Resistance, Bacterial/physiology , Enterococcus faecalis/isolation & purification , Enterococcus faecalis/physiology , Humans , Ligilactobacillus salivarius/isolation & purification , Ligilactobacillus salivarius/physiology , Probiotics/isolation & purification , Probiotics/pharmacology , Salmonella enterica/pathogenicity
18.
Int J Food Microbiol ; 340: 109054, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33465549

ABSTRACT

Foodborne exposure to antimicrobial-resistant bacteria is a growing global health concern. Escherichia coli (E. coli) is well recognised as an indicator of food contamination with faecal materials. In the present study, we investigated the occurrence of E. coli in table eggs sold at retail supermarkets in Western Australia (WA). A total of 2172 visually clean and intact retail eggs were purchased between October 2017 and June 2018. A single carton containing a dozen eggs was considered as a single sample resulting a total of 181 samples. The shells and contents of each sample were separately pooled and tested using standard culture-based methods. Overall, generic E. coli was detected in 36 (19.8%; 95% confidence interval: 14.3; 26.4) of the 181 tested retail egg samples. We characterised 100 of the recovered E. coli isolates for their phenotypic antimicrobial resistance using minimum inhibitory concentration (MIC). A subset of E. coli isolates (n = 14) were selected on the basis of their MIC patterns, and were further characterised using whole genome sequencing (WGS). Fifty-seven (57%) of the recovered generic E. coli isolates (n = 100) were resistant to at least one of the 14 antimicrobials included in the MIC testing panel, of which 22 isolates (22%) showed multi-class resistance. The highest frequencies of non-susceptibility of E. coli isolated from WA retailed eggs were against tetracycline (49%) and ampicillin (36%). WGS revealed that tet(A) and blaTEM-1B genes were present in most of the isolates exhibiting phenotypic resistance to tetracycline and ampicillin, respectively. The majority (98%) of the characterised E. coli isolates were susceptible to ciprofloxacin and azithromycin, and none were resistant to the cephalosporin antimicrobials included in the MIC panel. Two isolates demonstrated reduced susceptibility to ciprofloxacin, with MICs of 0.125 and 0.25 mg/L, and WGS revealed the presence of plasmid mediated qnrs1 gene in both isolates. This is the first report on detection of non-wild-type resistance to fluoroquinolones in supermarket eggs in Australia; one of the two isolates was from a cage-laid eggs sample while the other was from a barn-laid retail eggs sample. Fluoroquinolones have never been permitted for use in poultry farms in Australia. Thus, the detection of low-level ciprofloxacin-resistant E. coli in the absence of local antimicrobial selection pressure at the Australian layer farms warrants further research on the potential role of the environment or human-related factors in the transmission of antimicrobial resistance. The results of this study add to the local and global understanding of antimicrobial resistance spread in foods of animal origin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Eggs/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Genome, Bacterial , Animals , Drug Resistance, Multiple, Bacterial , Escherichia coli/isolation & purification , Fluoroquinolones/pharmacology , Food Microbiology , Humans , Microbial Sensitivity Tests , Tetracycline Resistance , Western Australia
19.
Int Microbiol ; 24(1): 57-63, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32772220

ABSTRACT

In spite of evidence that domestic and wild birds may act as carriers of human pathogenic fungi, data on the role of laying hens as reservoirs of drug resistant and virulent yeasts is lacking. Here, we assess several virulence factors (phospholipase and haemolysin activity) and the antifungal susceptibility profiles of 84 Candida albicans and 17 Candida catenulata strains isolated from cloacae (group A), faeces (group B) and eggs (group C) of laying hens. Of these strains, 95% C. albicans and 23% C. catenulata strains displayed phospholipase and haemolytic activities. For C. albicans, the highest values of phospholipase (Pz = 0.62) and haemolytic activities (Hz = 0.49) were recorded among the strains from group C whilst for C. catenulata (Pz = 0.54; Hz = 0.49) among those from group A. High minimum inhibitory concentration (MIC) values for azoles and amphotericin B (AmB) were recorded irrespective of their sources in all C. albicans strains. A total of 22 C. albicans strains were multidrug resistant, displaying resistance to fluconazole, itraconazole (ITZ), voriconazole (VOR) and posaconazole (POS). All C. catenulata strains from group C were resistant to ITZ, POS, micafungin and anidulafungin and susceptible to AmB. In this study, C. albicans and C. catenulata isolated from the cloacae, faeces and eggs of laying hens produced phospholipase and haemolysin and might be multidrug resistant. In the environment (faeces) or in eggs, C. albicans and C. catenulata strains might acquire pathogenic virulence traits and/or show multidrug resistance profiles. Based on these results, breeding and handling of laying hens and/or eggs may have implications for human and animal health.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candida/pathogenicity , Chickens/microbiology , Animals , Candida/genetics , Candida/isolation & purification , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/isolation & purification , Candida albicans/pathogenicity , Drug Resistance, Fungal , Eggs/microbiology , Feces/microbiology , Female , Microbial Sensitivity Tests , Virulence
20.
Food Sci Technol Int ; 27(2): 184-193, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32703024

ABSTRACT

Egg powders are increasingly popular ingredients, due to their functionality and compactness, in industrial food production and preparation at homes. However, there is a lack of studies that evaluate the thermal resistance of Salmonella Enteritidis PT30 and its potential surrogate Enterococcus faecium NRRL B-2354 in egg powders. This study examined the log-linear relationship between the thermal resistance of Salmonella Enteritidis (D-value) and the water activity (aw) of egg powders. The changes of aw in the egg powders with temperature were measured using a Vapor Sorption Analyzer and a high-temperature cell. The D80 ℃-value of S. Enteritidis PT30 and E. faecium inoculated in the egg powders preconditioned to three aw levels (0.3, 0.45, and 0.6) at 20 ℃ were determined using aluminum thermal death test cells. The aw values increased (P < 0.05) in all three egg powders when the temperature of the samples was raised from room temperature to 80 ℃. The D80 ℃-values ranged from 5.3 ± 0.1 to 25.9 ± 0.2 min for S. Enteritidis while 10.4 ± 0.4 to 43.8 ± 0.4 for E. faecium in samples of the three different aw levels. S. Enteritidis PT30 showed a log-linear relationship between D80 ℃-values and aw80 ℃ for the egg powders. This study contributes to our understanding of the impact of aw on the development of thermal treatments for low-moisture foods.


Subject(s)
Eggs , Enterococcus faecium , Food Microbiology , Hot Temperature , Powders , Salmonella enteritidis , Water , Colony Count, Microbial , Eggs/microbiology , Enterococcus faecium/physiology , Salmonella enteritidis/physiology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...